DexMat Awarded Phase II SBIR: High Conductivity CNT Wiring for High Speed Data Cables

Abstract: In an era of reduced Defense budgets and increasing threats, military planners are seeking new technologies to reduce operating costs and increase operation capabilities for space and aviation platforms, and weight reduction is an attractive target. For example, transportation costs to geosynchronous orbits using a NASA reusable launch vehicle are close to $10,000 per pound of payload. Copper wiring, which makes up as much as one-third of the weight of a 15-ton satellite and 20 miles of an F-22 aircraft, is a clear target for weight reduction. Half of this wire weight is typically in the EMI shielding. Developing new lightweight, conductive materials that replace copper in the shielding and core conductor could serve as a lead candidate for radically reducing this weight. Carbon nanotubes (CNTs) combine high strength, electrical and thermal conductivity with low density, which makes them ideal for applications where weight reduction is a priority. DexMat is commercializing CNT technology that has shown the highest published values for conductivity and mechanical strength of CNT materials. This Phase II Proposal will continue developing CNT-based cables with solution-processing technology capable of producing high performance CNT fibers and coatings, without the use of binders and wetting agents.

Project Details: https://www.sbir.gov/sbirsearch/detail/1412727