New High Strength Yarn Product Release

In this video we introduce a high strength grade of 200 micron diameter CNT yarn to the catalog of DexMat yarn products! The high strength yarn has a breaking force of well over 3 kg and is about 50 % stronger than its predecessor. The tensile strength of this yarn is 1 GPa, and it is also very lightweight and highly flexible. Our high strength yarn is now available for purchase at the DexMat online store.

New Carbon Nanotube Film Product Release

In this video we introduce 10 micron thick film to the catalog of DexMat film products and show how the film can be easily processed on standard winding equipment. CNT films have tremendous potential in applications ranging from EMI shielding in cables/electronics, to thermal interface materials, to heating elements or conductive materials in clothing or e-textiles. High conductivity, high strength, 10 micron thick film is now available for purchase at the DexMat online store!

Happy Pi Day!

Here we show off the difference between Pi grams of copper wire and Pi grams of our carbon nanotube yarn.

Full disclosure: some of the difference in length here is due to the carbon nanotube yarn being thinner. The copper wire in this video is 1.2 mm in diameter; the carbon nanotube yarn ranged from 0.7 mm to 1 mm in diameter. The length difference is so extreme, however, because of the difference in density between the two materials, which is close to a factor of 9.

Happy Pi Day!

Plating Carbon Nanotube Yarn with Copper

In this video we provide a brief look at some of the experimental work we are doing to develop new products at DexMat. Here, we are using an electroplating process to coat our carbon nanotube yarn with a layer of copper. This process may allow us to create a useful hybrid material, combining the conductivity of metallic copper with the strength and durability of our lightweight carbon nanotube yarn.

Braiding CNT Fibers

In this video, we demonstrate the process that we use for braiding carbon nanotube fibers to make EMI shielding braids or braided CNT yarns. These braids are lightweight and highly flexible. They are also more conductive than stainless steel fiber braids and much stronger than copper wire.

CNT Yarn & Tape: Resistance Measurement

A demonstration of the methods & tools we typically use to measure the electrical resistance of our carbon nanotube yarns & tapes.

CNT tape EMI shield: blocking phone reception!

In this video we use a quick and easy experiment to demonstrate that our 5 cm wide carbon nanotube tape is able to effectively block cell phone signals. We have wrapped Tyson’s phone in 2 layers of this tape, which effectively blocks incoming calls due to the tape’s excellent electromagnetic shielding properties.

Carbon Nanotube Tapes up to 5 cm wide!

This video demonstrates the array of carbon nanotube tapes that DexMat currently produces. Strong, conductive, and flexible tapes or films up to 5 cm wide are currently available and even wider tape formats are currently under development.

These tapes have tremendous potential in applications ranging from EMI shielding in cables/electronics, to thermal interface materials, to heating elements or conductive materials in clothing or e-textiles.

Making Carbon Nanotube Yarns

This video shows how carbon nanotube (CNT) fibers can be assembled into yarns or ropes by plying the fibers together with a planetary ropemaking machine. These yarns are lightweight and highly flexible. They are also more conductive than stainless steel thread and much stronger than copper wire.

Will it Burn? CNT Yarn vs Stainless Steel Thread

This video highlights the high temperature stability of CNT yarns compared to stainless steel thread by applying a 1430 C butane torch to both materials. The stainless steel thread barely lasts 1 second before melting, while the CNT yarn survives the torch for more than 30 seconds without any visible damage.  The high thermal stability and superior thermal conductivity of the CNT material is most likely the reason that it is able to survive exposure to the flame from the torch.  The impressive thermal properties of CNT fibers and films make them highly promising for application in flame retardant materials such as those used in firefighter suits.