New Knitting Technique Produces Electronic Smart Fabrics at Industrial Scales

New Knitting Technique Produces Electronic Smart Fabrics at Industrial Scales

Meet the bike shorts of the future.

Image: BluIz60/Shutterstock.com

Australian scientists have developed a knitting technique capable of producing electrically-conductive Spandex-carbon nanotube hybrid textiles at industrial scales. As described earlier this month in a paper published in ACS Nano, http://pubs.acs.org/doi/abs/10.1021/acsnano.6b04125 the stretchable fabrics “exhibit excellent performance” as sensors and artificial muscles. Potential applications include adjustable smart clothing, robotics, and medical devices.

At the core of the material is regular old Spandex, which is basically artificial super-rubber spun into fibers. In the process outlined in the paper, SPX filaments are coated with aerogel sheets of carbon nanotubes. Carbon nanotubes have the neat property of tunable electrical conductivity, and by tweaking the fabrication process, it’s possible to create materials with electrical and mechanical properties that change as the fabric changes shape. Meet the bike shorts of the future.

“The coating method operates at room temperature, requires no solvents, and does not compromise textile production speeds,” the Australian team reports. As such, the hybrid yarns are also pretty cheap to produce—a key requirement.

What makes the stuff really interesting is how it converts electricity into mechanical work. With an applied voltage, it’s possible to get the textile to contract by as much as 33 percent as it heats up. The material then relaxes as the voltage is removed and it cools down. This mechanical power output maxes out at around 1.28 kW/kg, which, the paper notes, is well beyond what’s offered by mammalian skeletal muscle. To demonstrate, the researchers used their new material to implement a knee brace, as below:

Another possible biomedical application is as a “lymph sleeve,” a compression sleeve used to treat lymphedema, a common side effect of cancer treatments.

“The lymph sleeve, for example, will be developed using lightweight actuating fabric that will detect swelling and then respond by ‘squeezing’ the arm to enhance lymph flow,” Javad Foroughi, the lead author of the new paper, told Physics World.  “We are also investigating the possibility of employing it in artificial-heart muscles for positive support of the right ventricle.”

Original story by Michael Byrne / Motherboard Vice.com

Carbon Nanotubes Could Provide the Military With Battery-Power in Textiles

Carbon Nanotubes Could Provide the Military With Battery-Power in Textiles

The carbon fibers can be spooled into strong, conductive thread. Like spider silk, it is stretchy and strong. Credit: Joseph Fuqua II/UC Creative Services
Carbon nanotubes could lead to clothing that can double as a battery, a discovery that could be particularly useful for the military.

A team from the University of Cincinnati—in a partnership with the Wright-Patterson Air force base—are working to take advantage of the properties of carbon nanotubes in developing new applications for soldiers in the field.

“The major challenge is translating these beautiful properties to take advantage of their strength, conductivity and heat resistance,” UC professor Vesselin Shanov, who co-directs UC’s Nanoworld Laboratories, said in a statement.

Graduate student Mark Haase has worked with Air Force researchers over the past year to find applications for carbon nanotubes using X-ray computer tomography to analyze samples.

“This pushes us to work in groups and to specialize,” Haase said in a statement. “These are the same dynamics we see in corporate research and industry. Engineering is a group activity these days so we can take advantage of that.”

The researchers used chemical vapor deposition to grow the carbon nanotubes on silicon wafers the size of a quarter under heat in a vacuum chamber.

“Each particle has a nucleation point,” Haase said. “Colloquially, we can call it a seed. Our carbon-containing gas is introduced into the reactor. When the carbon gas interacts with our ‘seed,’ it breaks down and re-forms on the surface. We let it grow until it reaches the size we want.”

UC’s Nanoworld Lab set a world record in 2007 by growing a nanotube that stretched nearly two centimeters, the longest carbon nanotube array produced in a lab at the time. The lab can currently create nanotubes that are substantially longer.

They were able to stretch the little fibrous square over an industrial spool in the lab to convert the sheet of carbon to a spun thread that can be woven into textiles.

“It’s exactly like a textile,” Shanov said. “We can assemble them like a machine thread and use them in applications ranging from sensors to track heavy metals in water or energy storage devices, including super capacitors and batteries.”

This ultimately could lead to a much lighter load for soldiers in battle.

“As much as one-third of the weight they carry is just batteries to power all of their equipment,” Haase said. “So even if we can shave a little off that, it’s a big advantage for them in the field.”

The study was published in Materials Research Express.
Full article by Kenny Walter – Digital Reporter @RandMagazine here.

eTextile Wristband Controls Small Household Appliances

Video: Watch a simple fabric wristband control small household appliances

[Image above] Credit: American Chemical Society, YouTube

We have come quite a long way from the TV remote control.

Technology has undoubtedly made our lives a lot easier in many respects. We’ve just about reached the point where we will be able to control nearly everything in our home remotely with the touch of a smartphone.

But for those little tasks inside the home, why bother with a smartphone? What if you wanted to use small appliances or your computer without messing with the on/off switches on each device?

Several researchers have already solved that problem by designing electronic textiles that could enable users to control a computer or small appliance by swiping a finger over fabric.

Although e-textiles are already on the market in many forms, the researchers wanted to improve upon existing technology. Most have “poor air permeability, can’t be laundered or are too costly or complex to mass-produce,” according to a news story from the American Chemical Society.

So the researchers developed a self-powered nanogenerator by screen-printing conductive carbon nanotube ink onto nylon fabric. And since this was a wearable device, of course, it needed to be washable. They combined polyurethane, a synthetic polymer, with the carbon nanotubes, adhering them to the fabric. After wrapping the entire device with silk and turning it into a wristband, the researchers connected the device to a computer and other small appliances to demonstrate how it could turn on and control appliances from several feet away.

And according to the researchers in the article, their e-textile is inexpensive to mass produce.

Besides making life easier for us able-bodied folks, the device could also help those with limited mobility or even disabled people better navigate their environment.

The paper, published in ACS Nano, is “Screen-Printed Washable Electronic Textiles as Self-Powered Touch/Gesture Tribo-Sensors for Intelligent Human–Machine Interaction” (DOI: 10.1021/acsnano.8b02477).

Original Article Published on June 20th, 2018 | By: Faye Oney

Watch the video below to see how the e-textile device can control small household appliances and a computer.

Electrical Interconnect Applications for Carbon Nanotubes in Military Aerospace Systems

Flexible, lightweight, and versatile CNTs are becoming a valuable material in conductor applications for the military and a host of other markets.

Carbon nanotubes are one of the most unique and interesting materials developed in the last decade. These products, widely known as CNTs, can be manufactured by various methods, but are most commonly made using chemical vapor deposition, a high-temperature manufacturing process used to create durable, solid, high-performance materials. The end result is a paper-like, ultra-thin sheet that can be further processed into a variety of forms suitable for a wide range of applications.

This material can become an electrically charged carbon sheet with some very special properties that are of great utility in conductor development. CNT sheets can be spun into fiber-like strands and twisted into various configurations that simulate copper stranding. An insulated jacket is then extruded on top of the carbon nanotube to create a wire. The resulting product is approximately one-eighth the weight of a typical copper conductor wire and has a strength-to-weight ratio 117 times that of steel. Additionally, because the material is fundamentally a type of plastic, it does not have the same fatigue characteristics as copper wire.

CNT technology can also be used to replace copper shields. By simply taking a thin CNT sheet and wrapping it around the wires to form a shield (see Figure 1), designers can achieve substantial weight savings over copper shields.

Challenges to CNT Adoption

Cost

CNT technology has had limited viability for use in many aerospace applications due to its higher initial costs. However, costs are coming down quickly. In the early development years of CNTs, the material cost around 500 times as much as copper. Today, the cost is closer to 10 times that of copper and, within the next five years, CNT is expected to command only a 20–30% price premium.

Electrical Conductivity

The electrical conductivity of CNT technology is vital to its overall success in electrical interconnect applications. In the early research and development phase, the resistivity of electrically charged CNTs was about 200 times that of copper. More recently, that value dropped down to only 20 times that of copper. Now samples from manufacturers are getting closer to 10 times the resistivity of copper. The current objective for leading developers of this technology is to bring it down to five times that of copper. If that happens, it will be a real game-changer.

EMI Protection

Lightweight shielding is very important to the defense industry, and CNTs show great promise here. Currently, CNT shields exhibit performance similar to copper at frequencies above 1GHz, but performance drops off significantly, especially at frequencies below 100Mhz. The weight savings over copper can be as much as 80%, though, so there is a trade-off that largely depends on an application’s EMI requirements. Solutions include using a combination of a CNT shield with a smaller-gauge copper shield, which could still reduce weight and perform reasonably well.

Termination

A lot of investigative work has been done on both crimping and soldering CNT material. To date, the crimp method shows the best results from a viability standpoint. Current mil spec standard tools and crimp contacts

have been tested and analyzed with mixed results. However, it has been determined that, with only slight modification to the crimp settings and a slight enhancement to {text missing in original article}

Connectors

Initial research into using CNTs to advance connector technology has focused on two primary areas: coaxial cables with RF connectors and mil standard 1553 data bus cables with dedicated discrete connectors. There are also efforts to evaluate CNTs with standard 38999 Series III connectors, as well as with miniature push-pull circular connectors commonly used in soldier systems. With the exception of the RF connectors, the preliminary results are encouraging, and show viability. However, this application may require some minor modifications to either the contacts or to the inserts. More research is still needed.

Manufacturers

The development of carbon nanotubes is truly a global effort led by several universities, including Rice University in Houston, that collaborate with CNT producers. Over the last few years, manufacturers in the US, Japan, and other countries have significantly scaled up production to help reduce costs to the point at which CNTs can become a viable multi-use product. These suppliers of CNT yarns and sheets are also working closely with several wire manufacturers to produce primary wire, cables, and RF coaxial cables.

Electrical Applications

One immediate application being evaluated by the defense industry is the replacement of copper-based 1553 database cables with CNT conductors and shields. The weight savings they offer can be upwards of several pounds, which is an especially significant advantage for space applications, as each pound of payload typically costs upwards of $10,000 to launch into space. Electrical testing has already been conducted to determine the signal integrity loss of CNT conductors and shields and has returned surprisingly good results, showing little signal loss degradation on lengths up to 10–15 feet, which will only improve as the conductivity of CNT materials continues to improve.

In addition to the space market, two helicopter manufacturers in the United States are conducting independent test studies to determine the viability of CNT materials for use in the rotary wing market.

A Bright Future for CNTs

CNT’s unique set of properties is helping the material find a place in applications across nearly every industry. CNTs are currently being employed in and evaluated for applications including optical power detectors, radar absorption, microelectronics, transistors, thermal management, solar panels, and even body armor. With this versatility, the future looks extremely bright for carbon-nanotube-based products.

Original story by by Tom Briere on June 20, 2017

Mil-Aero Industries Eye Carbon Nanotubes as They Target Cost Savings

Ultra-lightweight carbon nanotubes may replace copper wires.

Today’s aerospace and aircraft industries focus on size, weight, power, and cost (SWaP-C), and cost is now often figured for program or operational life, which may total thousands of dollars per pound. This gives tremendous impetus and justification to accept high-cost new technology to obtain weight savings.

Reducing F-35 by 20 Pounds Could Provide $230M Savings

Satellites have always paid extra to reduce weight since each payload pound may cost more than $5,000 to launch. Studies by the Center for Strategic and Budgetary Assessments (CSBA) show that the new F-35 has a $4,500 cost per pound over the aircraft’s operational program life

until 2070. (For comparison, the cost per pound for the F-22 is estimated at $3,500.) The F-35 has projected production of2,557 aircraft for the U.S. and nine for export customers scheduled through 2037. Therefore, a weight reduction of just 20lbs per plane could result in savings of $230,000,000! Even if this is off by 50%, the expected benefits already are driving new industry developments.

In addition to fighter aircraft, each ounce is also critical in future soldier wearables, UAVs, portable radars, vehicle communications, and other equipment to increase survivability, mission endurance, and success.

Interconnect weight savings are being obtained by incorporating higher contact density, composite materials, combinational multi-port connectors, and other approaches. However, a new technology involving carbon nanotubes (CNTs) is emerging and offers a lightweight alternative to copper wire and other conductive shielding materials. A carbon nanotube is produced as a layer of carbon atoms in a tubular configuration, in single- or multiple-walled versions.

CNTs are being mixed with polymers to create high-strength, lightweight composite materials. CNT fibers can be made into conductive sheets and tapes, which offer a myriad of potentials. Optimal performance may result from spinning CNT fibers into conductive threads (referred to as yarn) to potentially replace copper wires in harnesses, motor windings, and shields.

Another important gain is reliability. CNT fibers and yarn can withstand millions of bending cycles, while standard fiber/wire would have yielded many times. The minimum bending radius requirements of today’s cable is not applicable for CNT fibers and cables.

Market potentials for CNT technology are bringing new companies into the forefront. Nanocomp Technologies offers commercial CNT fibers created using a carbon vapor deposition (CVD) reactor and then formed into sheets or fibers that can be twisted into shields or primary conductors. Another supplier is Syscom Advanced Materials Inc., which provides a variety of metal-clad fibers.

DexMat Inc. in Houston produces CNT fiber using a wet acid process that draws multiple fibers that can be shaped into a shield or primary conductor, and future developments for  include flat tape. The company boasts a strong Ph.D. cadre from nearby Rice University where they have successfully fabricated coaxial cable inner and outer conductors by coating a solution of CNTs in chlorosulfonic acid to achieve a two-times better conductivity than seen previously. This may prove an attractive alternative to commercial coax cable using tin-coated-copper with comparable attenuation and greater mechanical durability with 97% reduced mass, according to the company.

Usually, the outer conductor is the heaviest portion of today’s cables. In coax, the outer conductor provides both signal transmission and electromagnetic shielding. While shielding does not require high conductivity in the outer conductor, signal loss (i.e., signal attenuation) through the transmission line is significantly affected by the conductivity and architecture of the outer conductor. The new solution-coated CNT outer conductors offer near-term application potentials. Several connector companies are reportedly studying termination techniques.

Carbon Nanotube Materials Provide Shielding

TE Connectivity has been working to use CNT materials for shielding and data transmission cables. In a paper presented at the 2012 IWCS Conference, Dr. Stefanie Harvey, senior manager for corporate strategy, reported that they had achieved greater than 50dB shielding effectiveness in the GHz range, and their “data transmission cables using a yarn format perform comparably to MIL-STD-1553.” In the January 5, 2016 issue of ASSEMBLY, Dr. Harvey reviewed how replacing the braid in RG-58 cable would reduce weight from 38.8 grams per meter (g/m) to 11.5g/m, while replacing the center conductor with CNT yarn would further reduce weight to 7.3g/m for a combined weight reduction of 80%.

Composites are used to replace heavy copper wire with metal plated aramid fibers for use in wire and cable EMI shielding. EMI shielding made with plated aramid fibers can reduce weight by as much as 80%, leading to major weight reduction depending on the size of the aircraft or satellite. Aramid fibers are a class of strong, heat-resistant synthetic fibers, the best known of which is DuPont™ Kevlar®, used in ballistic-rated body armor.

Carlisle Interconnect Technologies (formerly Micro-Coax Inc.) provides a unique weight-reducing EMI/RFI shielding solution using their proprietary high-strength ARACON® brand metal clad fibers. Ron Souders, technical director, Carlisle Interconnect Technologies, advises that, for typical applications, switching to ARACON allows a weight savings of 80% when compared to traditional metal braided or woven EMI shielding products. This offers the conductivity of an outer metal coating with the strength, light weight, and flexibility of aramid fiber.

*Note: DexMat also provides products for shielding applications not mentioned in this article.

** Could insert “See full article here.” and not show material below **

Ron Souders further explained that the specific gravity of aramid fiber is only 1.44g/cc, compared to copper at 8.9g/cc, and that, even with the addition of metal coatings, the specific gravity of ARACON fibers ranges from 3 – 5g/cc. The tensile strength (measured in kilopounds per square inch, or Ksi) of the aramid core (350Ksi) is from three to 10 times higher than that of traditional or high-strength copper cores, which typically span 35 to 95Ksi. Since ARACON fibers behave like a textile, they are far more flexible and compliant than metal.

Industry Standardization is Underway

The benefits offered by CNT fiber, whether as EMI/RFI shielding, signal or coaxial cable, or other new components, have prompted the Naval Air Systems Command (NAVAIR) in Patuxent River, Maryland, to sponsor the establishment of suitable “Military Specification for Conductive Carbon Conductors used in Aircraft Wiring,” eventually with QPL sources. The proposed formal qualification program should stabilize components and materials for future use.

CNT technology also was included in a recent multiple-day RF coordination meeting held in February by the Defense Logistics Agency (DLA) at the Defense Supply Center Columbus (DSCC). Suppliers of basic CNT materials, wire, cables, cable assembles, and signal and RF/microwave connectors are now working on both application-specific and generalized products to achieve the weight reduction and reliability benefits offered by CNT and other metallized fibers.

Original story by David Shaff – April 28, 2017

Gamma-ray shielding performance of carbon nanotube film material

This paper aims to explore the shielding potential of light-weight carbon nanotube (CNT) film materials against gamma-ray generated from americium-241 (241Am) and caesium-137 (137Cs). The influence factors of gamma mass attenuation coefficient of CNT film laminates were investigated to reveal structure-property relationship. The results showed that CNT film materials had bigger mass attenuation coefficients than carbon fiber reinforced composites, suggesting stronger radiation interaction induced by CNT’s cylindrical nanostructure. CNT alignment was proved to be conducive to the improvement of mass attenuation coefficient and gamma attenuation ratio. Aligned CNT film laminate with the thickness of 10 mm had a mass attenuation coefficient of 0.086 cm2 /g and attenuation ratio of 4.9% against gamma-ray exposed to 137Cs, which were higher than those of aluminum, iron or copper sheets. CNT film material demonstrated its potential for the application of light-weight gamma-ray safety equipment and devices.

Download full paper at: https://houstontx.library.ingentaconnect.com/content/asp/me/2016/00000006/00000005/art00010

DexMat Cofounders Featured in Forbes 30 Under 30: Manufacturing

Francesca_Mirri__28__Dmitri_Tsentalovich__29_-_In_Photos__2016_30_Under_30__Manufacturing_-_Forbes

Source: DexMat Cofounders Featured in Forbes 30 Under 30: Manufacturing

Nano-coating Makes Coaxial Cables Lighter

Rice University scientists replace metal with carbon nanotubes for aerospace use

Common coaxial cables could be made 50 percent lighter with a new nanotube-based outer conductor developed by Rice University scientists.

The Rice lab of Professor Matteo Pasquali has developed a coating that could replace the tin-coated copper braid that transmits the signal and shields the cable from electromagnetic interference. The metal braid is the heaviest component in modern coaxial data cables.

Rice University research scientist Francesca Mirri holds a standard coaxial data cable (bottom) and a new cable with an outer conductor of carbon nanotubes. Replacing the braided metal outer conductor with a conductive nanotube coating makes the cable 50 percent lighter, Mirri said.

Rice University research scientist Francesca Mirri holds a standard coaxial data cable (bottom) and a new cable with an outer conductor of carbon nanotubes. Replacing the braided metal outer conductor with a conductive nanotube coating makes the cable 50 percent lighter, Mirri said. Photo by Jeff Fitlow

The research appears this month in the American Chemical Society journal ACS Applied Materials and Interfaces.

Replacing the outer conductor with Rice’s flexible, high-performance coating would benefit airplanes and spacecraft, in which the weight and strength of data-carrying cables are significant factors in performance.

Rice research scientist Francesca Mirri, lead author of the paper, made three versions of the new cable by varying the carbon-nanotube thickness of the coating. She found that the thickest, about 90 microns – approximately the width of the average human hair – met military-grade standards for shielding and was also the most robust; it handled 10,000 bending cycles with no detrimental effect on the cable performance.

“Current coaxial cables have to use a thick metal braid to meet the mechanical requirements and appropriate conductance,” Mirri said. “Our cable meets military standards, but we’re able to supply the strength and flexibility without the bulk.”

Replacing the braided outer conductor in coaxial data cables with a coat of conductive carbon nanotubes saves significant weight

Replacing the braided outer conductor in coaxial data cables with a coat of conductive carbon nanotubes saves significant weight. Courtesy of the Pasquali Lab

Coaxial cables consist of four elements: a conductive copper core, an electrically insulating polymer sheath, an outer conductor and a polymer jacket. The Rice lab replaced only the outer conductor by coating sheathed cores with a solution of carbon nanotubes in chlorosulfonic acid. Compared with earlier attempts to use carbon nanotubes in cables, this method yields a more uniform conductor and has higher throughput, Pasquali said. “This is one of the few cases where you can have your cake and eat it, too,” he said. “We obtained better processing and improved performance.”

 

Replacing the braided metal conductor with the nanotube coating eliminated 97 percent of the component’s mass, Mirri said.

She said the lab is working on a method to scale up production. The lab is drawing on its experience in producing high-performance nanotube-based fibers.

“It’s a very similar process,” Mirri said. “We just need to substitute the exit of the fiber extrusion setup with a wire-coating die. These are high-throughput processes currently used in the polymer industry to make a lot of commercial products. The Air Force seems very interested in this technology, and we are currently working on a Small Business Innovation Research project with the Air Force Research Laboratory to see how far we can take it.”

Co-authors are graduate students Robert Headrick and Amram Bengio and alumni April Choi and Yimin Luo, all of Rice; Nathan Orloff, Aaron Forster, Angela Hight Walker, Paul Butler and Kalman Migler of the National Institute of Standards and Technology (NIST); Rana Ashkar of NIST, the University of Maryland and Oak Ridge National Laboratory; and Christian Long of NIST and the University of Maryland.

Pasquali is the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, chair of the Department of Chemistry and a professor of materials science and nanoengineering and of chemistry.

The research was supported by the Air Force Office of Scientific Research, the Air Force Research Laboratories, the Robert A. Welch Foundation, NIST, the National Science Foundation and a NASA Space Technology Research Fellowship.

source: Rice University News & Media

Nanotube Fibers Being Tested as a Way to Restore Electrical Health to Hearts

Rice University, Texas Heart Institute will study soft, conductive fibers’ ability to bridge scar tissue

Rice University and Texas Heart Institute researchers are studying the use of soft, flexible fibers made of carbon nanotubes to restore electrical conductivity to damaged heart tissue.

Rice scientist Matteo Pasquali holds a spool of fiber made of pure carbon nanotubes. The fibers are being studied to bridge gaps in the conductivity in damaged heart tissues.

Rice scientist Matteo Pasquali holds a spool of fiber made of pure carbon nanotubes. The fibers are being studied to bridge gaps in the conductivity in damaged heart tissues. Photo by Jeff Fitlow

With support from the American Heart Association, these institutions will test the fibers’ ability to bridge electrical gaps in tissue caused by cardiac arrhythmias that affect more than 4 million Americans each year.

A beating heart is controlled by electrical signals that prompt its tissues to contract and relax. Scars in heart tissue conduct little or no electricity. Soft, highly conductive fibers offer a way to work around those gaps.

“They’re like extension cords,” said Mehdi Razavi, the director of electrophysiology clinical research at the Texas Heart Institute and the project’s lead investigator. “They allow us to pick up charge from one side of the scar and deliver it to the other side. Essentially, we’re short-circuiting the short circuit.”

The nanotube fibers developed at Rice by the lab of chemist and chemical engineer Matteo Pasquali are about a quarter of the thickness of a human hair. But even an inch-long piece of the material contains millions of nanotubes, microscopic cylinders of pure carbon discovered in the early 1990s.

Though the fibers were developed to replace the miles of cables in commercial airplanes to save weight, their potential for medical applications became quickly apparent, Pasquali said.

“We didn’t design the fiber to be soft, but it turns out to be mechanically very similar to a suture,” he said. “And it has all the electrical function necessary for an application like this.”

Because the fibers are soft, flexible and extremely tough, they are expected to be far more suitable for biological applications than the metal wires used to deliver power to devices like pacemakers. They have already shown potential for helping people with Parkinson’s disease who require brain implants to treat their neurological condition.

Rice University research scientist Flavia Vitale is developing nanotube fiber applications. She is part of a collaboration with Texas Heart Institute to use the fibers as conductive bridges for damaged heart tissue.

Rice research scientist Flavia Vitale is developing nanotube fiber applications. She is part of a collaboration with Texas Heart Institute to use the fibers as conductive bridges for damaged heart tissue. Photo by Jeff Fitlow

“People who progress to heart failure can have the formation of scar tissue over time,” said Mark McCauley, a cardiac electrophysiologist at the Texas Heart Institute. “There are a lot of different ways scarring can affect conduction in the heart. Recently we’ve been most interested in the development of scarring after heart attacks, but we believe this fiber may help us treat all kinds of cardiac arrhythmias and electrical-conduction issues.”

“Metal wires themselves can cause tissue to scar,” said Flavia Vitale, a research scientist in Pasquali’s lab who is developing nanotube fiber applications. “If you think about inserting a needle into your skin, eventually your skin will react and completely isolate it, because it’s stiff. Scar will form around the needle.

“But these fibers are unique,” she said. “They’re smaller and more flexible than a human hair and so strong that they can resist flexural fatigue due to the constant beating of the heart.”

Vitale noted the fibers’ low impedance (its resistance to current) allows electricity to move from tissue to bridge and back with ease, far better than with metal wires.

The researchers are testing the fibers’ biocompatibility but hope human trials are no more than a few years away.

Razavi said a safe, effective way to conduct electricity through scarred heart tissue will revolutionize treatment. “Should these more extensive studies confirm our initial findings, a paradigm shift in treatment of sudden cardiac death will be within reach, as for the first time the underlying cause for these events may be corrected on a permanent basis,” he said.

Pasquali said he is gratified to see a new way in which nanotechnology, for which Rice is renowned, can help save lives. “We’ve been excited from the beginning to learn about each other’s areas and come up with uses for the material,” he said of his friendship – and now collaboration – with Razavi. “We’re determined to find ways to treat rather than manage disease.”

Pasquali is the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, chair of the Department of Chemistry and a professor of materials science and nanoengineering and of chemistry.

Source: Rice University News & Media