Wearable Electronics: Carbon Nanotube Yarn + LEDs

This is the follow-up to our previous video, in which we demonstrated how our carbon nanotube yarn could be stitched into fabric using a conventional sewing machine. Here we are showing off the finished product: a DexMat t-shirt with blinking LEDs embedded into our lightning bolt logo!

We used an Arduino Gemma and a small battery pack (sewn into a pouch near the hem of the shirt) to create this LED effect. The electrical connections between the Arduino and the LEDs consist of 4 lengths of our high strength 130 micron carbon nanotube yarn. As Tyson demonstrates, this yarn can easily bend and fold with the shirt, and the zig-zag stitch allows it to stretch as well. It’s also extremely light and comfortable!

Check out the first part of this project here.

High strength 130 micron CNT yarn spotlight

In this video we focus on one of our newly available products, a higher strength version of our 130 micron diameter carbon nanotube yarn.

DexMat at Interwire 2019

DexMat is at the Interwire 2019 expo in Atlanta, GA, to talk about our carbon nanotube yarns and films. If you are in the area from May 14 – May 16, come by booth 154 and say hello!

New High Strength Yarn Product Release

In this video we introduce a high strength grade of 200 micron diameter CNT yarn to the catalog of DexMat yarn products! The high strength yarn has a breaking force of well over 3 kg and is about 50 % stronger than its predecessor. The tensile strength of this yarn is 1 GPa, and it is also very lightweight and highly flexible. Our high strength yarn is now available for purchase at the DexMat online store.

Happy Pi Day!

Here we show off the difference between Pi grams of copper wire and Pi grams of our carbon nanotube yarn.

Full disclosure: some of the difference in length here is due to the carbon nanotube yarn being thinner. The copper wire in this video is 1.2 mm in diameter; the carbon nanotube yarn ranged from 0.7 mm to 1 mm in diameter. The length difference is so extreme, however, because of the difference in density between the two materials, which is close to a factor of 9.

Happy Pi Day!

Plating Carbon Nanotube Yarn with Copper

In this video we provide a brief look at some of the experimental work we are doing to develop new products at DexMat. Here, we are using an electroplating process to coat our carbon nanotube yarn with a layer of copper. This process may allow us to create a useful hybrid material, combining the conductivity of metallic copper with the strength and durability of our lightweight carbon nanotube yarn.

Braiding CNT Fibers

In this video, we demonstrate the process that we use for braiding carbon nanotube fibers to make EMI shielding braids or braided CNT yarns. These braids are lightweight and highly flexible. They are also more conductive than stainless steel fiber braids and much stronger than copper wire.

Making Carbon Nanotube Yarns

This video shows how carbon nanotube (CNT) fibers can be assembled into yarns or ropes by plying the fibers together with a planetary ropemaking machine. These yarns are lightweight and highly flexible. They are also more conductive than stainless steel thread and much stronger than copper wire.

Will it Burn? CNT Yarn vs Stainless Steel Thread

This video highlights the high temperature stability of CNT yarns compared to stainless steel thread by applying a 1430 C butane torch to both materials. The stainless steel thread barely lasts 1 second before melting, while the CNT yarn survives the torch for more than 30 seconds without any visible damage.  The high thermal stability and superior thermal conductivity of the CNT material is most likely the reason that it is able to survive exposure to the flame from the torch.  The impressive thermal properties of CNT fibers and films make them highly promising for application in flame retardant materials such as those used in firefighter suits.

SBIR Funding Furthers DexMat CNT Technology

Source: Original article appears in the December 2018 issue of the Wire Journal International.
The feature on DexMat is on pages 48-50.