SBIR Funding Furthers DexMat CNT Technology

Source: Original article appears in the December 2018 issue of the Wire Journal International.
The feature on DexMat is on pages 48-50.

DexMat CNT Tape Shielded Cables Offer 50% Weight Reduction

Houston, TX- 12/11/2018. Working in collaboration with Minnesota Wire & Cable Company, DexMat has produced carbon nanotube (CNT) tape shielded RG-316 cables that perform comparably to copper (Cu) double braid shielded RG-316 cables. However, the CNT tape shields are 95% lighter than the copper double braid shields. The shielding effectiveness and insertion loss results for the CNT and Cu shielded cables are shown below. The CNT tape shielded cables have the following advantages:

  • Overall RG-316 cable weight reduction of CNT shielded vs. Cu double braid shielded cable without connectors is over 50%
  • CNT tape shield is 100 microns thick compared to 500 micron thick Cu double braid shield
  • Easy to apply CNT tape to coaxial as well as twisted pair type cables
  • Wide range of CNT tape widths and lengths are available for purchase
  • CNT tape shielded cables survive at least 1000 flex cycles with a minimum bend radius of at least 7.5X the jacketed cable diameter


Specification Sheet: DexMat fiber, tape, and cable specs Dec-2018

DexMat Named as SpaceCom Entrepreneur Challenge Semi-Finalist

HOUSTON – SpaceCom – The Space Commerce Conference and Exposition, where NASA, aerospace and industry come together to connect, announces the finalists of the SpaceCom Entrepreneur Challenge. Taking place at the George R. Brown Convention Center in Houston November 27-28, this challenge is the culmination of the SpaceCom Entrepreneur Summit (SES). The Entrepreneur Challenge began with 56 startup applicants. Through the first round of judging, that number was narrowed to 23 and now 17 semi-finalists who will present during the first day of the SpaceCom Entrepreneur Summit, Tuesday, November 27.

The semi-finalists include:

  • Arlula
  • Benchmark Space Systems
  • Cemvita Factory Inc.
  • Devali Inc
  • DexMat, Inc. 
  • EXOS Aerospace Systems & Technologies
  • Finsophy Inc.
  • Hedy-Anthiel Space Systems
  • Lazarus 3D Inc.,
  • Lucid Drone Technologies, Inc.
  • LunaSonde, LLC
  • Molon Labe LLC
  • SaraniaSat Inc.,
  • Solstar Space Company
  • STARK Industries LLC
  • Sugarhouse Aerospace
  • Swift Data LLC

At the culmination of day one, five finalists will be selected to present during a pitch competition. The winner will then be selected after the final round of pitches during the general session November 28 at 1:30 PM. During this presentation, members of the audience and a panel of judges will select the grand prize winner. These finalists are eligible to win the below prizes provided by Google Cloud for Startups:

  •  $100,000 in Google Cloud credits to the competition winner
  • $20,000 in Google Cloud credits for runners up
  • $3,000 in Google Cloud credits for every qualified entrant in the competition

Additional prizes include:

  • Guaranteed extended meeting with an investment firm
  • Speaking role at SpaceCom 2019
  • A booth at SpaceCom 2019


DexMat Featured in Wire Journal International

Source: Original article appears in the October 2018 issue of the Wire Journal International.
Free subscription is required to read the digital version of the article. The feature on DexMat is on pages 52-53.

Badminton Racket Strung with CNT Yarn [Demo]

This is no ordinary badminton racket! The strings are made entirely out of DexMat CNT yarn, offering superior performance, durability, and the ability to embed sensors and electronics directly into the rackets of the future because these CNT strings have high electrical conductivity. 700 micron diameter braided CNT yarn was used for the strings on this racket to match the typical diameter of polymer-based strings used in badminton rackets. Check out the video of the racket in action below:


DexMat Awarded Phase I SBIR: Robust Lightweight CNT Wiring for Space Systems

NASA is challenged to find ways of effectively shielding sensitive electronic equipment from electromagnetic interference (EMI) without adding significant weight to space flight vehicles and satellites (the heavier they are the more fuel they need to achieve orbit).  EMI shielding for wire and cables is an attractive opportunity for weight reduction. However, with the advent of highly reusable next generation space vehicles, wiring must be not only light weight, but also strong and robust, capable of withstanding extreme conditions, intense vibration and long lifecycles. It is important that wire weight reductions do not come at the expense of mechanical strength or EMI shielding effectiveness.  DexMat is developing a novel and highly conductive Carbon nanotube (CNT) EMI shield product that will allow for significant weight reduction without compromising mechanical strength or shield effectiveness. CNTs are advancing as the most promising solution for reducing the weight of spacecraft wires.  The shielding effectiveness of CNT materials is comparable to that of heavy metal braids, but at a fraction of the weight.  Compared to a copper wire with the same diameter, a CNT fiber has 6 times higher strength, more than 6 times lower density,  and at least 25 times higher flexure tolerance, essential qualities for conductors in aerospace applications. Under this Phase I project, DexMat will develop CNT shielding braid (made from CNT yarn from Dexmat) that can potentially increase the mechanical strength of CNT tape used as a primary EMI shield. These CNT braids will be of different thicknesses and area coverage, to augment the performance and product appeal of CNT tapes. Additionally, DexMat will begin to conduct the first accelerated aging tests to determine the impact on mechanical strength of shielding made with CNT tapes, CNT yard braids, and hybrid CNT tape/braid combinations.

Potential NASA Applications: 
The first planned product to contain DexMat technology is lightweight CNT cables. CNT cables combine high strength, electrical and thermal conductivity with low density, making them ideal for aerospace applications where weight reduction is a priority, including reusable next generation space vehicles and satellites. Given the tremendous costs associated with satellite launches, NASA and the aerospace industry will see substantial savings from our CNT-based wire.

Potential Non-NASA Applications: 
DexMat CNT technology has applications in the military aircraft and commercial aviation markets, to effectively reduce weight of aircraft and satellite designs.  For a single-aisle aircraft, a 1% reduction of in weight can lead to a net cost savings of $240K-$1.6M per year in use. For larger aircraft, the savings can reach $2.4-5M. Additional applications include wearable electronics, eTextiles and bioelectronics.

Raw Carbon Nanotubes vs DexMat Material

Here we show the difference between raw carbon nanotubes and the carbon nanotube yarns and films that we make at DexMat.

DexMat Awarded Phase II SBIR – Lightweight CNT Shielded Cables for Space Applications

Abstract: The effects of electromagnetic interactions in electrical systems are of growing concern due to the increasing susceptibility of system components to electromagnetic interference (EMI), use of automated electronic systems, and pollution of the electromagnetic environment with electromagnetic emissions. The effects of EMI can be detrimental to electronic systems utilized in space missions; even small EMI issues can lead to total mission failure, resulting in significant mission delays and economic loss. Additionally, NASA is challenged to find ways of effectively shielding sensitive electronic equipment from EMI without adding significant weight to space flight vehicles and satellites in order to manage fuel costs. The solution for both issues resides in the use of carbon nanotubes (CNTs), which offer the most promising solution for reducing spacecraft wire weight. CNTs are an alluring alternative to conventional conductors used in coaxial data cables because they combine mechanical strength, electrical conductivity, and low density. DexMat has developed a novel CNT deposition process for directly applying CNTs onto dielectric materials to produce an electrically conductive EMI shield. By placing a premium on the quality of raw CNTs, DexMat has created a product with increased potential to reduce cable weight while minimizing insertion losses when incorporated into wire. In the proposed research, DexMat seeks to develop a small-scale CNT Tape production process and continue the development of the CNT separation processes. The need for CNT Tape was discovered while obtaining feedback from potential customers that noted the desire for a product format that allows for quick and easy integration into existing manufacturing processes without the need for outsourcing processes.

Project Details:

DexMat Awarded Phase II SBIR: High Temperature Electric Wires

Abstract: Electric wires and cables constitute by far the largest weight portion of aircraft electrical power systems, as well as a large fraction of the entire aircraft weight. For example, a modern transport aircraft contains over 200 miles of wire, and an F-22 aircraft has about 20 miles of wiring. The increased emphasis and reliance on fly-by-wire technology and avionics for modern aircraft has resulted in wiring becoming a critical safety-of-flight system. Aerospace vehicles continue to increase in wire system complexity and volume as traditional mechanical systems, such as flight controls and flight surface control actuators, are converted to all electric systems. This Phase II Proposal involves a dual pronged strategy for developing high temperature CNT-based power cables: 1) Dexmat will seek to improve the underlying CNT yarn conductivity with and without dopants that do not require encapsulation (i.e., non-transitory dopants); 2) Improve the encapsulation process to enable the use of dopants that do require encapsulation.

Project Details:

DexMat Awarded Phase I SBIR: Continuous Roll-to-Roll Wire Coating Process to Produce CNT EMI Shields

Abstract: This SBIR Phase I project strives to reduce aircraft wire weight in order to improve aircraft range and reduce operating costs. Commercial and military aerospace companies are heavily concerned with fuel costs associated with aircraft operation, as this expense contributes significantly to the total costs of the company. Substantial reductions in aircraft weight could save millions of dollars per plane over its operating lifetime. For example, eliminating a single pound from a military fighter aircraft can save up to $3,000 over its lifetime, as well as increase its operating range, capacity to carry a larger payload and extend its time-on-station capabilities. These cost savings will benefit commercial aviation companies from decreased expense, resulting in a higher net income. Enhanced financial performance promotes company growth and the creation of more jobs throughout all levels of the organization. Increased income and job growth in this sector with stimulate continued national economic growth, providing benefit to the government via tax collections and increased commercial sector performance. National defense and aerospace sectors would also benefit from fuel cost reductions reducing costs and greenhouse gas emissions. This project directly aligns with the NSF mission to progress science, advance national prosperity and secure the national defense. This project provides innovative contribution to wire development and manufacturing through the use of a carbon nanotube deposition process in order to produce shielding for wires. This process is versatile and can be used to produce cables with a commercial metal inner conductor or a carbon nanotube fiber bundle as inner conductor and a specific conductivity similar to tin. It combines high strength, electrical conductivity and thermal conductivity with low density, which makes them ideal for applications where weight reduction is a priority, specifically in aerospace applications. Until now, only minor reductions in wire weight have been achieved, through advances in composite connectors, thermoplastic cable clamps, downsizing connectors and using thinner wall insulation. The use of carbon nanotubes would remove the need for component removal due to decreased weight. The goal of this project is to prove out a continuous roll-to-roll wire coating process to produce carbon nanotube electromagnetic interference shields suitable for a large volume manufacturing operation. This will be accomplished through the use of foundationary methods of carbon nanotube deposition developed prior to this Phase I project. This project will produce the methods required for developing roll-to-roll continuous carbon nanotube wire coating.

Project Details: