DexMat Awarded Phase II SBIR – Lightweight CNT Shielded Cables for Space Applications

Abstract: The effects of electromagnetic interactions in electrical systems are of growing concern due to the increasing susceptibility of system components to electromagnetic interference (EMI), use of automated electronic systems, and pollution of the electromagnetic environment with electromagnetic emissions. The effects of EMI can be detrimental to electronic systems utilized in space missions; even small EMI issues can lead to total mission failure, resulting in significant mission delays and economic loss. Additionally, NASA is challenged to find ways of effectively shielding sensitive electronic equipment from EMI without adding significant weight to space flight vehicles and satellites in order to manage fuel costs. The solution for both issues resides in the use of carbon nanotubes (CNTs), which offer the most promising solution for reducing spacecraft wire weight. CNTs are an alluring alternative to conventional conductors used in coaxial data cables because they combine mechanical strength, electrical conductivity, and low density. DexMat has developed a novel CNT deposition process for directly applying CNTs onto dielectric materials to produce an electrically conductive EMI shield. By placing a premium on the quality of raw CNTs, DexMat has created a product with increased potential to reduce cable weight while minimizing insertion losses when incorporated into wire. In the proposed research, DexMat seeks to develop a small-scale CNT Tape production process and continue the development of the CNT separation processes. The need for CNT Tape was discovered while obtaining feedback from potential customers that noted the desire for a product format that allows for quick and easy integration into existing manufacturing processes without the need for outsourcing processes.

Project Details: https://www.sbir.gov/sbirsearch/detail/1426213

DexMat Awarded Phase II SBIR: High Temperature Electric Wires

Abstract: Electric wires and cables constitute by far the largest weight portion of aircraft electrical power systems, as well as a large fraction of the entire aircraft weight. For example, a modern transport aircraft contains over 200 miles of wire, and an F-22 aircraft has about 20 miles of wiring. The increased emphasis and reliance on fly-by-wire technology and avionics for modern aircraft has resulted in wiring becoming a critical safety-of-flight system. Aerospace vehicles continue to increase in wire system complexity and volume as traditional mechanical systems, such as flight controls and flight surface control actuators, are converted to all electric systems. This Phase II Proposal involves a dual pronged strategy for developing high temperature CNT-based power cables: 1) Dexmat will seek to improve the underlying CNT yarn conductivity with and without dopants that do not require encapsulation (i.e., non-transitory dopants); 2) Improve the encapsulation process to enable the use of dopants that do require encapsulation.

Project Details: https://www.sbir.gov/sbirsearch/detail/1488599

DexMat Awarded Phase I SBIR: Continuous Roll-to-Roll Wire Coating Process to Produce CNT EMI Shields

Abstract: This SBIR Phase I project strives to reduce aircraft wire weight in order to improve aircraft range and reduce operating costs. Commercial and military aerospace companies are heavily concerned with fuel costs associated with aircraft operation, as this expense contributes significantly to the total costs of the company. Substantial reductions in aircraft weight could save millions of dollars per plane over its operating lifetime. For example, eliminating a single pound from a military fighter aircraft can save up to $3,000 over its lifetime, as well as increase its operating range, capacity to carry a larger payload and extend its time-on-station capabilities. These cost savings will benefit commercial aviation companies from decreased expense, resulting in a higher net income. Enhanced financial performance promotes company growth and the creation of more jobs throughout all levels of the organization. Increased income and job growth in this sector with stimulate continued national economic growth, providing benefit to the government via tax collections and increased commercial sector performance. National defense and aerospace sectors would also benefit from fuel cost reductions reducing costs and greenhouse gas emissions. This project directly aligns with the NSF mission to progress science, advance national prosperity and secure the national defense. This project provides innovative contribution to wire development and manufacturing through the use of a carbon nanotube deposition process in order to produce shielding for wires. This process is versatile and can be used to produce cables with a commercial metal inner conductor or a carbon nanotube fiber bundle as inner conductor and a specific conductivity similar to tin. It combines high strength, electrical conductivity and thermal conductivity with low density, which makes them ideal for applications where weight reduction is a priority, specifically in aerospace applications. Until now, only minor reductions in wire weight have been achieved, through advances in composite connectors, thermoplastic cable clamps, downsizing connectors and using thinner wall insulation. The use of carbon nanotubes would remove the need for component removal due to decreased weight. The goal of this project is to prove out a continuous roll-to-roll wire coating process to produce carbon nanotube electromagnetic interference shields suitable for a large volume manufacturing operation. This will be accomplished through the use of foundationary methods of carbon nanotube deposition developed prior to this Phase I project. This project will produce the methods required for developing roll-to-roll continuous carbon nanotube wire coating.

Project Details: https://www.sbir.gov/sbirsearch/detail/1191963

DexMat Awarded Phase II SBIR: High Conductivity CNT Wiring for High Speed Data Cables

Abstract: In an era of reduced Defense budgets and increasing threats, military planners are seeking new technologies to reduce operating costs and increase operation capabilities for space and aviation platforms, and weight reduction is an attractive target. For example, transportation costs to geosynchronous orbits using a NASA reusable launch vehicle are close to $10,000 per pound of payload. Copper wiring, which makes up as much as one-third of the weight of a 15-ton satellite and 20 miles of an F-22 aircraft, is a clear target for weight reduction. Half of this wire weight is typically in the EMI shielding. Developing new lightweight, conductive materials that replace copper in the shielding and core conductor could serve as a lead candidate for radically reducing this weight. Carbon nanotubes (CNTs) combine high strength, electrical and thermal conductivity with low density, which makes them ideal for applications where weight reduction is a priority. DexMat is commercializing CNT technology that has shown the highest published values for conductivity and mechanical strength of CNT materials. This Phase II Proposal will continue developing CNT-based cables with solution-processing technology capable of producing high performance CNT fibers and coatings, without the use of binders and wetting agents.

Project Details: https://www.sbir.gov/sbirsearch/detail/1412727

DexMat Awarded Phase I SBIR: Lightweight CNT Shielded Cables for Space Applications

Abstract: The effects of electromagnetic interactions in electrical systems are of growing concern due to the increasing susceptibility of system components to electromagnetic interference (EMI), use of automated electronic systems, and pollution of the electromagnetic environment (EME) with electromagnetic emissions. The effects of EMI can be detrimental to electronic systems utilized in space missions; even small EMI issues can lead to total mission failure, resulting in significant mission delays and economic loss. Additionally, NASA is challenged to find ways of effectively shielding sensitive electronic equipment from EMI without adding significant weight to space flight vehicles and satellites in order to manage fuel costs. The solution for both issues resides in the use of carbon nanotubes (CNTs), which are advancing as the most promising solution for reducing the weight of spacecraft wires. CNTs are an alluring alternative to conventional conductors used in coaxial data cables because they combine mechanical strength, electrical conductivity, and low density. DexMat has developed a novel CNT deposition process for directly applying CNTs onto dielectric materials to produce an electrically conductive EMI shield. The high conductivity CNT fibers have the potential to replace the inner conductor in cables, improving their mechanical durability and providing comparable specific conductivity to copper. By placing a premium on the quality of raw CNTs, DexMat has created a product which will have increased potential to reduce cable weight while minimizing insertion losses when incorporated into wire. In the proposed research DexMat seeks to increase electrical conductivity of CNT films, produce cost competitive products, develop new quality assurance processes, and determine the long-term product reliability of CNT cables. Understanding these facets of CNT cable production will lead to enhancements on DexMat innovation and production of a commercially viable product.

Project Details: https://www.sbir.gov/sbirsearch/detail/1217639

DexMat Awarded Phase I SBIR: High-Temperature Electric Wires

Abstract: Electric wires and cables constitute by far the largest weight portion of aircraft electrical power systems, as well as a large fraction of the entire aircraft weight. For example, a modern transport aircraft contains over 200 miles of wire, and an F-22 aircraft has about 20 miles of wiring. The increased emphasis and reliance on fly-by-wire technology and avionics for modern aircraft has resulted in wiring becoming a critical safety-of-flight system. Aerospace vehicles continue to increase in wire system complexity and volume as traditional mechanical systems, such as flight controls and flight surface control actuators, are converted to all electric systems. DexMat is developing a technology for coating doped carbon nanotubes (CNTs) with impermeable barrier films. Under this Phase I project, DexMat will adapt the use of metallic barrier film coatings to prevent the egression of CNT dopants and, thus, preserve high electrical conductivity even if the fiber is subjected to high-temperature environments.; BENEFIT: The proposed primary production of DexMat technology is directed to the commercial and military aviation segments, mainly companies seeking to reduce the weight of their aircraft design. Beyond these customers, the potential uses of CNT wires and films include a broad spectrum of military and civilian applicationsfrom lightweight aerospace cables, to power and data conduits for wearable electronics, to health monitoring and diagnostic sensors.

Project Details: https://www.sbir.gov/sbirsearch/detail/1410755

DexMat Cofounders Featured in Forbes 30 Under 30: Manufacturing

Francesca_Mirri__28__Dmitri_Tsentalovich__29_-_In_Photos__2016_30_Under_30__Manufacturing_-_Forbes

Source: DexMat Cofounders Featured in Forbes 30 Under 30: Manufacturing

Nanotube Fibers Being Tested as a Way to Restore Electrical Health to Hearts

Rice University, Texas Heart Institute will study soft, conductive fibers’ ability to bridge scar tissue

Rice University and Texas Heart Institute researchers are studying the use of soft, flexible fibers made of carbon nanotubes to restore electrical conductivity to damaged heart tissue.

Rice scientist Matteo Pasquali holds a spool of fiber made of pure carbon nanotubes. The fibers are being studied to bridge gaps in the conductivity in damaged heart tissues.

Rice scientist Matteo Pasquali holds a spool of fiber made of pure carbon nanotubes. The fibers are being studied to bridge gaps in the conductivity in damaged heart tissues. Photo by Jeff Fitlow

With support from the American Heart Association, these institutions will test the fibers’ ability to bridge electrical gaps in tissue caused by cardiac arrhythmias that affect more than 4 million Americans each year.

A beating heart is controlled by electrical signals that prompt its tissues to contract and relax. Scars in heart tissue conduct little or no electricity. Soft, highly conductive fibers offer a way to work around those gaps.

“They’re like extension cords,” said Mehdi Razavi, the director of electrophysiology clinical research at the Texas Heart Institute and the project’s lead investigator. “They allow us to pick up charge from one side of the scar and deliver it to the other side. Essentially, we’re short-circuiting the short circuit.”

The nanotube fibers developed at Rice by the lab of chemist and chemical engineer Matteo Pasquali are about a quarter of the thickness of a human hair. But even an inch-long piece of the material contains millions of nanotubes, microscopic cylinders of pure carbon discovered in the early 1990s.

Though the fibers were developed to replace the miles of cables in commercial airplanes to save weight, their potential for medical applications became quickly apparent, Pasquali said.

“We didn’t design the fiber to be soft, but it turns out to be mechanically very similar to a suture,” he said. “And it has all the electrical function necessary for an application like this.”

Because the fibers are soft, flexible and extremely tough, they are expected to be far more suitable for biological applications than the metal wires used to deliver power to devices like pacemakers. They have already shown potential for helping people with Parkinson’s disease who require brain implants to treat their neurological condition.

Rice University research scientist Flavia Vitale is developing nanotube fiber applications. She is part of a collaboration with Texas Heart Institute to use the fibers as conductive bridges for damaged heart tissue.

Rice research scientist Flavia Vitale is developing nanotube fiber applications. She is part of a collaboration with Texas Heart Institute to use the fibers as conductive bridges for damaged heart tissue. Photo by Jeff Fitlow

“People who progress to heart failure can have the formation of scar tissue over time,” said Mark McCauley, a cardiac electrophysiologist at the Texas Heart Institute. “There are a lot of different ways scarring can affect conduction in the heart. Recently we’ve been most interested in the development of scarring after heart attacks, but we believe this fiber may help us treat all kinds of cardiac arrhythmias and electrical-conduction issues.”

“Metal wires themselves can cause tissue to scar,” said Flavia Vitale, a research scientist in Pasquali’s lab who is developing nanotube fiber applications. “If you think about inserting a needle into your skin, eventually your skin will react and completely isolate it, because it’s stiff. Scar will form around the needle.

“But these fibers are unique,” she said. “They’re smaller and more flexible than a human hair and so strong that they can resist flexural fatigue due to the constant beating of the heart.”

Vitale noted the fibers’ low impedance (its resistance to current) allows electricity to move from tissue to bridge and back with ease, far better than with metal wires.

The researchers are testing the fibers’ biocompatibility but hope human trials are no more than a few years away.

Razavi said a safe, effective way to conduct electricity through scarred heart tissue will revolutionize treatment. “Should these more extensive studies confirm our initial findings, a paradigm shift in treatment of sudden cardiac death will be within reach, as for the first time the underlying cause for these events may be corrected on a permanent basis,” he said.

Pasquali said he is gratified to see a new way in which nanotechnology, for which Rice is renowned, can help save lives. “We’ve been excited from the beginning to learn about each other’s areas and come up with uses for the material,” he said of his friendship – and now collaboration – with Razavi. “We’re determined to find ways to treat rather than manage disease.”

Pasquali is the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, chair of the Department of Chemistry and a professor of materials science and nanoengineering and of chemistry.

Source: Rice University News & Media

DexMat Awarded Phase I SBIR: High Conductivity CNT Wiring for High Speed Data Cables

Abstract: In an era of reduced Defense budgets and increasing threats, military planners are seeking new technologies to reduce operating costs and increase operation capabilities for space and aviation platforms, and weight reduction is an attractive target. For example, transportation costs to geosynchronous orbits using a NASA reusable launch vehicle are close to $10,000 per pound of payload. Copper wiring, which makes up as much as one-third of the weight of a 15-ton satellite and 20 miles of an F-22 aircraft, is a clear target for weight reduction. Half of this wire weight is typically in the EMI shielding. Developing new lightweight, conductive materials that replace copper in the shielding and core conductor could serve as a lead candidate for radically reducing this weight. Carbon nanotubes (CNTs) combine high strength, electrical and thermal conductivity with low density, which makes them ideal for applications where weight reduction is a priority. DexMat is commercializing CNT technology that has shown the highest published values for conductivity and mechanical strength of CNT materials. This Phase I Proposal will examine the feasibility of developing CNT-based cables with solution-processing technology capable of producing high performance CNT fibers and coatings, without the use of binders and wetting agents.BENEFIT:The potential benefits of this innovation could include military development for future ground, air or space systems that have stringent weight requirements, including launch vehicles, UAVs, portable communications,small satellites,etc. Commercial Application: Any commercial development for electronic-heavy systems with stringent weight requirements, including jetliners, satellites, small computers, etc.

Project Details: https://www.sbir.gov/sbirsearch/detail/824749