DexMat Carbon Nanotube Yarn: Will it Burn?

This video highlights the high temperature stability of CNT yarns compared to copper wire by applying a 1430 C butane torch to both materials. The copper wire lasts about 5 seconds before melting, while the CNT yarn survives the torch for more than 30 seconds without any visible damage.  The high thermal stability and superior thermal conductivity of the CNT material is most likely the reason that it is able to survive exposure to the flame from the torch.  The impressive thermal properties of CNT fibers and films make them highly promising for application in flame retardant materials such as those used in firefighter suits.

Space Dust Repelling Carbon Nanotube Fibers

Abstract: The above video demonstrates how carbon nanotube fibers are integrated into a spacesuit to help spacesuits mitigate dust contamination for future lunar and Mars missions.The spacesuit fabrication and testing was performed by researchers from the University of North Dakota, Boeing, and the NASA Glenn Research Center. CNT fibers were produced by DexMat.

Spacesuit dust mitigation has been a topic of high relevance and a critical path for future planetary exploration missions including Moon, Mars and Asteroids. A previous study demonstrated utilizing Carbon Nanotube (CNT) yarns as electrodes embedded into coupons made of spacesuit outer-layer material. When a multiphase Alternating Current (AC) voltage signal was applied to this material, the spacesuit fabric repelled greater than 80% lunar dust simulant with particle sizes between 10-75m in ambient conditions. As a continuation to this study, the feasibility of scaling the CNT embedded dust removal system on larger portions of spacesuit is investigated. A scaled prototype, representative of the knee joint section of a planetary spacesuit utilizing specifics of the NDX-2 lunar spacesuit developed by University of North Dakota was constructed. The outer-layer of this prototype is embedded with the CNT dust removal system and tested under various conditions. Fabrication of this system and results from the experiments using lunar dust simulant are detailed in this paper.

Source: Spacesuit Integrated Carbon Nanotube Dust Removal System: A Scaled Prototype

Carbon Nanotube Badminton Strings In Action

Above is a video demonstrating the performance of a badminton racket that uses strings made solely out of CNT yarn! The racket is strung with 700 micron diameter braided CNT yarn from DexMat.

DexMat Carbon Nanotube Film: Will it Tear?

The films and yarns manufactured by DexMat are made from well-aligned carbon nanotubes; they are resistant to breaking or tearing across the direction of that alignment.

However, when working with these materials it is helpful to keep in mind that their toughness is much lower when the aligned layers are pulled apart. As this video demonstrates, it is difficult to cut or tear our carbon nanotube film “crosswise”, but the same film can easily be torn into strips “lengthwise”. The same is true for cutting with a scissors or razor.

Cutting Carbon Nanotube Yarn

Materials made of aligned carbon nanotubes are very tough, which makes them difficult to cut! This video provides a useful tip for cutting our aligned carbon nanotube yarn to a desired length using a sharp razor.

A sharp pair of scissors can also work, so long as the yarn is under tension.

Cutting a Carbon Nanotube Film

Materials made of aligned carbon nanotubes are very tough, which makes them difficult to cut! This video provides a useful tip for cutting our aligned carbon nanotube film to a desired length using a sharp razor. A sharp pair of scissors can also work, so long as the film is under tension.

Carbon Nanotube Yarn Tensile Test

A demonstration of a test of ultimate tensile break force performed on a carbon nanotube yarn manufactured by DexMat.

Raw Carbon Nanotubes vs DexMat Material

Here we show the difference between raw carbon nanotubes and the carbon nanotube yarns and films that we make at DexMat.